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Abstract. It is commonly understood that the resilience of critical in-
formation technology (IT) systems based on artificial intelligence (AI)
must be ensured. In this regard, we consider resilience both in terms of
IT security threats, such as cyberattacks, as well as the ability to robustly
persist under uncertain and changing environmental conditions, such as
climate change or economic crises. This paper explores the relationship
between resilience and sustainability with regard to AI systems, develops
fields of action for resilient AI, and elaborates direct and indirect influ-
ences on the achievement of the United Nations Sustainable Development
Goals. Indirect in this case means that a sustainability effect is reached by
taking resilience measures when applying AI in a sustainability-relevant
application area, for example precision agriculture or smart health.

Keywords: artificial intelligence · machine learning · resilience · security
· sustainability.

1 Introduction

Artificial intelligence (AI) can be usefully applied to build resilience in many
areas. However, this can simultaneously open up new threats in the area of IT
security, as the use of technology creates the risk of failure, vulnerability, or
misuse. This paper discusses, how these threats can be countered and initially
demonstrates how the creation of robust and resilient AI can also have sustain-
ability effects in line with the United Nations (UN) Sustainable Development
Goals [35].

To this end, we must first define what resilient AI means. We base this on mul-
tiple definitions by the National Institute of Standards and Technology (NIST),
which we consolidate as follows: Resilience is the ability of an information system
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to mitigate the impact of known or unknown changes in the operating environ-
ment (including intentional attacks, accidents, and naturally occurring threats)
by (a) anticipating and preparing for such events (e.g., through risk management,
contingency, and business continuity planning), (b) the ability to withstand and
adapt to attacks, adverse conditions, or other stresses and to continue operations
(or rapidly regain the ability to do so), while maintaining essential and required
operational capabilities, and (c) restoring full operational capability after such
disruption in a time-frame consistent with mission requirements. Thus, it is also
about “robustness” in the face of a changing environment. Großklaus [16] refers
to this “ability to successfully drive the sustainable development of society under
uncertain and changing conditions” as “transformative resilience”.

We would like to point out that AI systems can never be considered as iso-
lated, abstracted entities, but must be seen in their social context as sociotech-
nical systems; it must be understood that algorithms and especially AI are not
just technical artifacts – in the sense of “physical, human-designed objects that
have both a function and a plan of use” as defined by Vermaas et al. [36] – but
complex systems characterized by collective and distributive action [30]. In our
case, this means that the concept of resilient AI has links to issues of acceptance
and trust. No AI system can be called resilient if its use is fraught with funda-
mental mistrust, accountability gaps, accusations of unfairness, or criticism of
its black-box nature. Likewise, the EU’s Joint Research Centre [19] distinguishes
four dimensions of resilience: societal, economic, organizational, and technologi-
cal. The focus of this work is on the technological side, touching organizational
aspects where appropriate. The societal sense of resilience is in fact what we
refer to as sustainability. This work is based on the assumption that the guiding
principles of resilience (in a technical/organizational sense) and sustainability
complement each other: In a crisis-ridden world, resilience becomes a basic re-
quirement for the success of sustainability goals. To validate this assumption,
this paper develops fields of action for resilient AI and examines their sustain-
ability impacts – in general and in selected sustainability-relevant application
areas. The underlying study is not yet complete; therefore, this paper represents
initial considerations and results of an ongoing work-in-progress effort.

The rest of this paper is organized as follows: Section 2 outlines our research
method and in particular the increasing focus in our stepwise approach. Sec-
tion 3 introduces robust and resilient AI and develops a roadmap for fields of
action. Section 4 discusses direct sustainability effects of resilient AI as well as
indirect effects, if according measures are taken in sustainability-relevant appli-
cation areas. Finally, section 5 concludes the paper, given that we are presenting
work-in-progress, with a focus on current and future work.

2 Research Method

As shown in figure 1, we proceed in three steps. In Eigner et al. [11], a survey
of the scientific state-of-the-art as well as the identification of possible fields of
action of robust and resilient AI was carried out; a summary can be found in
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section 3. This paper presents the continuation of this work. We have analyzed
potential sustainability impacts of the identified action areas based on academic
literature, project results and brainstorming with experts. In this second step
we focused on sustainability-relevant application areas. The resulting overview
of sustainability effects is provided in section 4. Last not least, we are currently
identifying recommended actions for public actors with a further increased focus
on smart cities and regions, critical infrastructures and ecological sustainability
goals using an exploratory scenario analysis [24].
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Fig. 1. Increasing focus and methods applied throughout our research

As shown in figure 2, different forms of dependencies between robust and
resilient AI and sustainability emerge:

a. Direct sustainability effects of a field of action, e.g., the reduction of bias in
AI algorithms has a direct positive impact on gender equality.

b. Indirect sustainability effects of robust and resilient AI in a specific appli-
cation area, e.g., increasing the robustness of an AI in precision agriculture
contributes to reducing hunger.

c. We are developing concrete recommendations for resilient AI in selected areas,
which may bring up new impacts. E.g., a recommendation to address drift



4 T. Priebe et al.

by frequently retraining machine learning (ML) models may increase energy
consumption and therefore have a negative sustainability effect.
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Fig. 2. Dependencies of the various concepts in our research

3 Robust and Resilient Artificial Intelligence

AI systems are becoming essential to our daily lives. Organizations should ensure
their resilience as with any other critical asset. However, the black-box approach
typically found in AI may make assessing and ensuring resilience different com-
pared to traditional IT systems. In Eigner et al. [11], we provide an overview of
the emerging field of resilient AI, both from the perspective of selected applica-
tion areas and specific AI techniques. From this, we derive fields of action for
robust and resilient AI. In figure 3 we structure these in the form of a roadmap, as
some targets have already been or are being extensively addressed, while others
will only reach practical applicability in the medium or long term. Following the
European Union (EU) High-Level Expert Group on Artificial Intelligence [17],
we divide the fields of action into security, safety, accuracy and reliability.

Security. Security incidents in AI can be distinguished by (a) the AI technology
used, (b) the type of incident, or (c) the stage of the AI/ML pipeline in which the
incident occurs. The type of disruption can be broadly divided into intentional
disruptions, which include all types of hostile attacks on AI systems and unin-
tentional disruptions, which can range from careless human interaction to rare
special cases that systems may never have encountered before. With this in mind
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Fig. 3. Roadmap for robust and resilient AI fields of action

we see plausibility tests, i.e. rules that identify at least outliers or unexpected
results of an AI algorithm, as a basic level of protection. More sophisticated
methods of mitigating hostile attacks are knows as adversarial AI [23].

Penetration testing (“pentesting” for short) is a key technique for assessing
the security and resilience of IT services and products. Since there are myriads
of possible threats in the field of AI that can affect the proper operation of AI
applications, pentesting of AI will certainly gain importance in the near future.
Initial approaches have been proposed, e.g., by Das et al. [8] or Tjoa et al. [33],
or are under development, still, currently no best practices methodologies exist.

Safety. Regarding the field of action risk and continuity management, KPMG
highlights in its AI Risk and Controls Matrix various risks associated with
AI [25]. Risks to be highlighted in this area include inadequate fallback solu-
tions related to infrastructure, the AI solution itself, and business operations.
In addition, the inability to restore service after an incident is highlighted as a
specific AI risk, as the last good AI state may not be easily restored due to its
complex and often black-box nature.

In terms of legal aspects, the United Kingdom Information Commissioner’s
Office [21] identifies three key areas: the legal status of algorithms, sector-specific
standards, and the interdependencies of privacy and AI. In addition, monitor-
ing robustness to (even non-adverse) changes in the environment opens up an-
other area of research requiring a holistic view of audit and certification of AI
systems [37]. In related terms, the upcoming EU AI-Act [12] differentiates AI
systems into four risk categories, ranging from ”unacceptable” risks to ”high”,
”limited” and ”minimal” risk levels. The categorization is not only depending
on the AI technology in use, but also on the sensibility of data and application
area.
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AI alignment aims align AI systems with human preferences and ethical prin-
ciples. AI systems, especially when using reinforcement learning, are based on
specified objectives. As it can be difficult do define all desired and, in partic-
ular, undesired behaviors, AI systems may find loopholes to accomplish their
objectives efficiently but in unintended, sometimes harmful ways [38].

Accuracy. Accuracy is one of the most important areas in the field of AI and
has received a lot of attention in the last decades, both to enable new applications
and to improve AI applications and make them market ready [1]. Data is the
very source of good AI in this regard; if the data quality is poor or if there is
distortion due to data pre-processing, many of these problems will be transferred
to the result or even amplified [39]. This includes, in particular, detection and
avoidance of bias [27]. Discrimination and bias often arise in the data collection
and modeling process, for example, when target variables are incorrectly defined,
questions are unclear, or historical data is used that was collected in a time when
moral concepts are no longer in line with current ones [4].

A major challenge, especially in robotics, is also to bridge the gap between
simulation and reality and to make “digital twins” robust to changing parameters
of the environment. Here, domain randomization approaches [34] are promising.
Furthermore, automation is especially problematic in so-called mixed environ-
ments, where robotic actors directly interact with human actors, which is a major
problem in the area of autonomous driving [9].

Reliability. We consider the continuous reliability of AI, as well as aspects of
trustworthiness and explainability. Machine learning (ML) models degrade over
time. A major reason for this is that the world, and thus the data, are not static;
therefore, the data to which the models are applied also change over time. This
effect is referred to as “drift”. Methods for drift detection and mitigation have
been discussed for some time [22], but adequate monitoring of AI systems has
only recently been established by trends such as MLOps.

The explainability of AI often missing in many advanced methods refers to
non-transparent (black-box-like) decision-making processes [15] for which, for ex-
ample, testing for backdoors is practically impossible. Human-centered AI means
to involve humans for labeling, improvement or correction. Especially the use of
AI together with human expertise is promising here, e.g. by formalization with
semantic technologies, resulting in the research area of semantic AI [5].

4 Sustainability Effects

In this section, we explore interdependencies between robust and resilient AI and
the UN Sustainable Development Goals [35]. Are there synergies or do conflicting
goals arise and how can these be negotiated? As outlined in section 2, direct and
indirect sustainability impacts can be identified. Here, indirect means an effect
through a resilience field of action, provided the AI is used in a sustainability-
relevant application area. In this paper, we consider precision agriculture and
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forestry, smart health and precision medicine, smart cities and regions (including
energy and mobility transition), industry and critical infrastructures, and police,
justice, and military as such sustainability-relevant application areas, informed
by the project experience of the authors and the experts interviewed. Figure 4
illustrates the various dependencies broken down by resilience field of action and
Sustainable Development Goal (SDG).

4.1 Direct Sustainability Effects

The AI Act of the European Union [12] includes, among others, a prohibition of
discrimination against groups of persons on the basis of their sex or other char-
acteristics. Dealing with legal aspects and a corresponding certification therefore
leads directly to an improvement in relation to the sustainable development goals
(SDGs) 5 (gender equality) and 10 (reduced inequalities). The same applies to
the technical measures derived from this to detect and mitigate bias. Explain-
ability of AI systems also leads to an improvement here, as inadequacies of the
models used are at least made visible.
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Explainable AI models also tend to use less computationally intensive algo-
rithms, resulting in a sustainability impact with respect to SDGs 7 (affordable
and clean energy) and 13 (climate action). On the contrary, drift detection and
mitigation usually leads to regular (potentially frequent) retraining of AI mod-
els, causing an increase in energy consumption and therefore a negative effect
on SDGs 7 and 13.

4.2 Sustainability Effects in Selected Application Areas

Precision Agriculture and Forestry. An important application area of AI
in precision agriculture and forestry is plant pest and disease detection and
prediction [20], which positively impacts SDG 2 (no hunger). Other goals include
optimizing the use of scarce resources such as water, as well as fertilizers and
pesticides, which also has a positive effect on SDG 15 (life on land). Relevant
fields of action for resilience are data quality as well as bias and drift detection and
mitigation. The latter is particularly important in a changing environment, e.g.,
due to climate change. Since labeled data is usually rare in such use cases [29], use
of human-centered AI techniques (such as interactive learning) is also relevant.

Smart Health and Precision Medicine. Important application areas of AI
in healthcare, and thus with an impact on SDG 3 (health and well-being) are,
for example, individualized medications and semi-automated diagnosis. This is
also referred to as P4 medicine (predictive, preventive, personalised and partici-
patory) [13]. Here, AI always serves only as support; the final decision must rest
with the physician. This is why human-centered AI approaches and explainability
are so important [18].

Due to the (also legal) classification of medical products as “high-risk AI” [12],
risk and business continuity management are also particularly important. Med-
ical applications may not be common targets of cyberattakcs (at least not like,
e.g., critical infrastructure targets), however basic security measures such as
plausibility checks should of course also be applied.

Medical AI systems have higher accuracy requirements than other applica-
tions. Therefore, consideration of data quality is particularly relevant, especially
in the context of rare phenomena. This also applies to the avoidance of bias,
since “biased” algorithms are more difficult to generalize. Given the nature of
medicine directly affecting humans, AI alignment is of particular importance
as well. Studying the effects of treatments, for example, on AI systems is not
sufficient, basically like trying to study them only on lab mice.

Smart Cities and Regions. Sustainability in smart cities and regions is di-
rectly represented by SDG 11 (sustainable cities and communities). Application
fields of AI here include the optimization of the use of renewable energy. Here,
too, adaptability to a changing environment (e.g., due to climate change), i.e.
drift detection and mitigation, is of central importance. An important aspect
in many smart cites is the concept of the sharing economy, i.e. citizens make
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(private) resources available for use by others when they do not need them [14].
Studies have already been conducted on the impact of this sharing economy on
the sustainability of such smart cities [3]. The use of AI in this area results in
various trustworthiness and resilience requirements related to bias and explain-
ability. Also, the fact that personal data is involved may require data protection
measures such as anonymization, which is in fact a form of distortion in data
preprocessing. The emerging use of digital twins in smart cities also requires
consideration of the simulation-to-reality gap. Sharing itself might also increase
the difficulty of attack attribution, which in itself is already a huge problem in
IT Security [7].

Industry and Critical Infrastructure. Defending against hostile attacks and
therefore penetration testing are particularly important in the area of industry
and critical infrastructure (e.g., power plants and power grids), represented by
SDG 9 (industry, innovation and infrastructure), as these are obvious targets
for cyber warfare. Based on the attacks on the Ukrainian power grid in 2015,
there was a strong increase in attention in this area [6] and the creation of
corresponding technologies and organizational units like specialized CERTs for
the energy sector. Applications of AI such as predictive maintenance or quality
control require data quality and distortion handling and means of drift detection
and mitigation. AI systems in critical infrastructure are legally classified as “high-
risk AI” [12], hence requiring proper risk and business continuity management.
Standards and certifications are also particularly important in this area [32].

Police, Justice and Military. Robust and resilient AI in the police, justice,
and military sectors (e.g., through demonstrable avoidance of bias and discrimi-
nation) inherently impacts SDG 16 (peace, justice, and strong institutions) [2]. A
prominent example here is the AI-based COMPAS database in the US, which was
developed to predict the likelihood of recidivism among offenders [26]. However,
predictive policing is rather controversial, both for ethical reasons (requiring re-
silience measures such as bias mitigation and explainability) and with regard to
the actual verifiable benefit [28].

In the military field, the situation is still much more opaque, as many de-
tails are subject to secrecy. Nevertheless, some trends and frameworks can be
identified, such as the ban on so-called Lethal Autonomous Weapon Systems
(LAWS) [31] in the European Union [10] and specifically through the AI Act [12].
There are currently some well-known public programs, such as from the US, the
focus in these publications is very much in the area of predictive maintenance,
unmanned aerial vehicles (UAVs), training of personnel and augmentation.

5 Conclusion

In this paper, we have provided an initial overview of fields of action for robust
and resilient AI and examined them for their sustainability effects. Direct effects
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were identified, e.g. through the reduction of bias. Indirect effects arise from the
use of AI in sustainability-relevant application areas. We have selected preci-
sion agriculture and forestry, smart health and precision medicine, smart cities
and regions, industry and critical infrastructures, as well as police, justice and
military, based on the project experience of the authors and interview partners.

On the one hand, a further, broader survey would be useful to expand the
analysis, which is certainly not complete to date. On the other hand, we also
intend to go deeper and define concrete recommended actions to achieve re-
silience with a more narrow focus (public actors in critical infrastructures and
smart cities and regions), which again need to be analyzed for their (in partic-
ular ecological) sustainability impacts. For example, a recommendation may be
to regulate and therefore limit the use of large pre-trained AI models (due to
their intransparency and potential bias). However, given that these pre-trained
models save training effort (and therefore resources) such a recommendation
may have a negative sustainability effect. Both aspects are being adressed in the
exploratory scenario analysis with our interviewees, which currently ongoing.
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