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Abstract—Due to climate change, more and more extreme
weather events are occurring. An accurate short-term forecast in
terms of time and location represents a significant advantage for
taking appropriate measures to prevent damage and to react and
plan more efficiently. This requires a network of ground stations
or remote sensing systems such as weather radar or satellites
as dense as possible. In large parts of Austria, however, rough
terrain limits the number of measuring stations and radar data
are also only available to an insufficient extent in certain areas
due to the topography. We aim to overcome these challenges by
using physical data of directional radio links scattered across
Austria to obtain information about the current precipitation
situation. In this work, we introduce an approach for classifying
rain events using a variety of different machine learning methods.
The results can be used to improve numerical weather prediction
models.

Keywords—machine learning, classification, commercial mi-
crowave links

I. INTRODUCTION

Short-term forecasts of extreme weather events are an in-
creasingly important basis for decision-making due to climate
change, both for economic measures and for measures to en-
sure the safety of the population. Due to climate change, more
and more extreme weather events are occurring. An accurate
short-term forecast in terms of time and location represents
a significant advantage for taking appropriate measures to
prevent damage and to react and plan more efficiently. The
quality of these forecasts can profit from the wide availability
of measurement data provided by commercial microwave
links (CML). Short-term forecasts require a reasonably dense
network of ground stations or remote sensing systems such
as weather radar or satellites to provide current weather data.

In many parts of several countries, however, the number of
ground stations is limited due to rough terrain, while radar
data may be lacking for certain regions due to topographical
reasons [1].
To overcome these limitations, commercial microwave links
provided by mobile network operators as a complement to
satellites and weather radars, as well as ground stations
currently deployed over different parts of the world. A major
advantage of using existing infrastructure of mobile operators,
like CMLs, lies not only in the cost-effectiveness but also
in their data recording capabilities. Said data can be used
in numerical models to complete rain monitoring provided
by rain gauges and weather stations. Thus, retrieval of pre-
cipitation data from CML data and subsequent mapping is
a form of opportunistic weather forecasting that has become
increasingly important in the research area of meteorology and
geodynamics in recent years [2] [3].

A. Related work

The difficulty of precipitation estimation from CML data
is to distinguish between fluctuations of raw attenuation data
during dry and wet periods. In the available literature, this
issue has already been addressed using various approaches.
Microwave signals with frequencies from about 1 to 100 GHz
(about 0.3 cm to 30 cm wavelength) are attenuated as they
travel through the atmosphere. This attenuation depends
primarily on the rain density and humidity along the
microwave links path and was observed even before radio
technology even worked in this frequency range [4]. Since
then, studies have been conducted repeatedly to estimate
precipitation between the CML transmitter and receiver (see,
e.g., [5] [6] [7]). Other studies addressed the creation of
gridded precipitation fields [8], relative humidity [9]), and978-1-6654-8356-8/22/$31.00 ©2022 IEEE
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even rain drop size distribution [10]. Precipitation data
from CMLs have been obtained, for example, by spatial
correlation of precipitation [11] or analysis of individual
time series [2] [12]. A combination with other observations
is also possible [13] [14]. Furthermore, CMLs have been
applied for hydrological purposes such as urban drainage
or runoff modeling [15] [16]. Larger datasets have been
used, for example, to produce two years of precipitation
data for the Netherlands [11] or an estimate over all of
Germany [10]. Recently, there have also been early attempts
to use artificial intelligence for forecasting weather and/or
precipitation events. Naveen and Mohan [17] provide a
very good overview of persistent, synoptic, statistical, and
computer-generated forecasting. Current studies dealing
with atmospheric weather forecasting using various machine
learning techniques are compared. Booz et al. [18] explored
a deep learning approach for a weather forecasting system.
The authors defined a deep learning model to build a neural
network for forecasting. Another approach [19] uses a neural
network for weather analysis and rain rate prediction with
high accuracy. The authors of [20] use a classical Linear
Discriminant Analysis to classify transmission data between
two microwave links in a 3-day period into four classes of
precipitation. A similar classification using cell phones in a
4G/LTE network is described by Beritelli et al. [21] using
a probabilistic neural network. The database was collected
only between a cell phone and a base station in a period
of 112 hours to establish a first proof of concept. Ravuri et
al [22] show another method by exploring a deep generative
model for likelihood-based prediction of precipitation from
radar using statistical, economic, and cognitive measures.
Their model produces realistic and spatiotemporally consistent
forecasts over regions. The authors have shown that generative
nowcasting can provide probabilistic forecasts that improve
predictive value and support operational utility, at resolutions
and lead times where alternative methods struggle.
Despite all these research studies [23] [11] [24] [25] [26]
indicating the potential of CMLs for rainfall determination,
challenges still remain. These mainly concern the handling
of typical sources of error, e.g. the wetting of antennas
during rain events or dense fog [27] leading to an additional
attenuation and therefore to an overestimation of the
precipitation amount, as well as decreasing signal levels
during dry periods.

The outline of this paper is as follows. First, available
commercial microwave link data are described including
preparation steps taken and features used for classification.
The main part of the paper deals with the experimental setup
including the baseline and final model used for classifying
rain events. Finally, the conclusion summarizes the results and
future work highlights the recommendations and outlooks for
further research.

II. DATA PREPARATION

A. Commercial Microwave Links

The study area considered is Austria (≈ 83.900 km2) and
approximately one quarter of the countries area is located on
lowlands and hilly areas. Only 32% of the area lie below an
altitude of 500 hm and more than 70% of the national territory
is mountainous [28].
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Fig. 1. Commercial Microwave Links scattered over Austria

TABLE I
CMLS BASED ON OPERATING FREQUENCY BAND INCLUDING AVERAGE

PATH LENGTHS

Frequency [GHz] # CML Average Path Length [km]

13 141 14.7

18 239 9.1

23 444 6.9

26 231 5.9

28 14 2.3

38 56 1.6

80 3440 1.6

As seen in figure 1, the CMLs distributed over Austria
have a high temporal and spatial data availability which, in
conjunction with the country’s topographical properties, make
Austria a representative example using microwave links to
estimate rain events. The data available were obtained by
Hutchison Drei Austria GmbH and range from May 2021 to
February 2022. Sent and received powers of microwave links
as well as their operating frequency bands (listed in table I)
are obtained over 3-minute intervals and aggregated to 15-
minute intervals to extract minimum, maximum and mean
power levels respectively. Lengths of the microwave links are
calculated using their geographical locations afterwards using
a WGS-84 rotational ellipsoid.

To verify the results of the CML models, actual rainfall
data provided by the Austrian Central Institution for Me-
teorology and Geodynamics (ZAMG) are used. These are
data on actual rainfall, precipitation type, wind strength and
directions, observations from individual weather stations as
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well as 2m temperature and 2m humidity (temperature and
humidity measured two metres above the ground), which are
available with a temporal resolution of 15 minutes for a 1 km
grid over Austria and beyond the national borders.

B. Feature Engineering

To gain further insights about signal attenuations at given
times, the extinction coefficient (also often referred to attenu-
ation coefficient) [29] is calculated to describe the extinction
of the signal caused by the attenuation and the length of
the microwave links using the Beer-Lambert law [30], which
describes the attenuation of the signal with respect to its
initial intensity when passing through a medium containing
an absorbing substance (air) and the layer thickness (length of
the CML).

Given the sent power S0 and received power S of the 15-
minute interval, the attenuation D can be calculated with

D = S − S0. (1)

This attenuation is also the decadic logarithm of the ratio
of two intensities

D = 10 · log10(
I

I0
), (2)

where I0 and I describe the intensity of the radiation (in W)
of the sender and receiver respectively.

If there is a (reasonably) homogeneous medium between the
emitter (transmitter) and the detector (receiver), which is the
cause of the extinction, the intensity I0 decays exponentially
after passing through the absorbing medium of thickness l
according to Beer-Lambert’s law:

I = I0 · e−α·l (3)

Solving Beer-Lambert’s law for α, which defines the ma-
terial property of this absorption as the extinction coefficient,
we obtain:

α = −
ln( I

I0
)

l
(4)

The numerator of the fraction contains the attenuation as
seen in equation (2), only with the logarithm of a different
base:

ln(
I

I0
) = ln(10) · log10(

I

I0
) = ln(10) · D

10
(5)

If we now put this back into equation (4) resolved according
to α, the coefficient can be calculated from the attenuation and
the length of CMLs:

α = − ln(10)

10
· D
l
= −0.23 · D

l
(6)

This makes it possible to combine three of the most im-
portant characteristics of available CML data (sending and
receiving signal powers and the length of the link) into a single
coefficient, which in conjunction with the standard deviation
of attenuation in the 15-minute interval as well as frequency
proved to be very influential for the machine learning process.

While a differentiation based on the state a CML operates
is not optimal considering Austria’s topography, we defined a
10 km2 grid and combined these grid points into clusters (see
figure 2) depending on the topographical properties. This data
is then used as categorical feature to categorize links based on
Austria’s topography.

The final feature set with corresponding units is listed in
table II.
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Fig. 2. Commercial Microwave Links based on topographical area

TABLE II
AVAILABLE FEATURES FOR CLASSIFICATION

Name Unit Description

DateTime UTC Datetime of the recording

RxLevel dBm Min/max received power levels

TxLevel dBm Min/max sent power levels

Attn dB Min/max attenuations

AttnDiff dB Min/max Attn deviation to dry periods

AttnStd dB Attn standard deviation

AttnMeanDry dB Mean attenuation during dry periods

AttnMeanStd dB Attn standard deviation during dry periods

ExtinctionCoeff m−1 Min/max extinction coefficient

RxBitrate bit/s Min/max received bitrate

TxBitrate bit/s Min/max sent bitrate

RxProfile categorical Min/max receiving profile used

TxProfile categorical Min/max sending profile used

PathLength km Length of Microwave Link

Frequency GHz Frequency used during transmission

Area categorical Area based on Austria’s topography

III. EXPERIMENTAL SETUP

A. Environment

Our development environment consists of miniforge1, an
open source conda environment including Python 3.9.6 and
scikit-learn 1.0. Using this environment, we developed our
models, which are able to predict rain events with precipitation
greater than 0.01 mm/15 min using Commercial Microwave
Link data.

1https://github.com/conda-forge/miniforge
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B. Setup

Preprocessed data as described in section II-B ranging
from May 2021 to October 2021 are labeled based on the
ground truth using radar data providing actual precipitation in
mm/15 min. This data set includes CML observations during
dry periods, extreme events such as thunderstorms and every-
thing in between to ensure a wide variation of weather events.

Radar data is available in form of a grid of 701×401 km2

over Austria where each data point provides the actual rain rate
at given location. While signal power observations of Com-
mercial Microwave Links are only available at the sending and
receiving end respectively, it is impossible to tell where a rain
event is located on the links path. Therefore per km of CMLs
PathLength, links are divided into uneven observation points
as this always provides an observation point for the midpoint
of the CML, where the actual rain rates based on the radar grid
on the INCA forecasting model [31] are considered as ground
truth. This RRPath with precipitation along microwave links
is summed up where values <0.01 mm/15 min are labeled as
[0 : Dry] and remaining values are labeled [1 : Rain]. As
there are much more observed dry events than rain events, we
draw random samples with equal distribution between the two
classes.

Next labeled data is split into a train- (80%) and test-
set (20%) using stratified sampling to get equal distributions
between the labels itself as well as Frequency and Area CMLs
operate in. The train-set is then fed through the training
pipeline using 10-fold cross-validation and gridsearch to find
the best parameter combinations. Data is normalized, Area as
categorical feature is one-hot encoded and DateTime (month
and hour) are cyclic feature encoded using (co-)sinusoidal
waves during this process to model the month and hour of
observations.

Results are evaluated using common machine learning met-
rics such as Accuracy, Precision, Recall and Cohen’s Kappa.
After finding the best model and parameter combination,
Likelihood-ratio tests provides further insights about the best
found model and quality of the results.

C. Baseline Model

While the machine learning pipeline stays exactly the same
for our step-wise approach to update and harden the model,
first only Commercial Microwave Links of our defined area
ooe as seen in figure 2, including Upper Austria and northern
parts of Salzburg, were considered as a subset to develop a
baseline model. This subset consists of 815 CMLs spanning
an area of ≈ 340 km2 with homogeneous topographical
properties. This baseline model serves as a fast sandbox for
testing the feasibility with different data preparation steps and
engineered features. In order to facilitate these tests and using
the setup as described in section III-B, a Logistic Regression
(LogR) fit with Stochastic Gradient Descent was chosen as
it is one of the oldest classifiers working in a time effective
manner. The best parameter combination was able to correctly
classify rain events with an accuracy of over 97% (see table
III for all metrics).

TABLE III
CLASSIFICATION METRICS, SCORES AND CONFUSION MATRIX FOR THE

BASELINE MODEL

Metric Score

Accuracy 0.979

F1 0.972

Precision 0.989

Recall 0.956

Cohen’s κ 0.956

Support 1.2e5

λLR < 0.01

A
ct

ua
l

Predicted

rain dry

dr
y

ra
in TP

95.56%
FN

4.44%

FP
0.63%

TN
99.37%

Figure 3 shows the output probabilities of the model for
area ooe with INCA radar data as ground truth providing
actual precipitation amounts for July 17th, 2021 at 4am during
a severe thunderstorm weekend serving as a representative
example of the model in action.
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Fig. 3. Classified rain events considering a homogeneous subset by the
baseline model with ground truth based on radar data during a thunderstorm
weekend on July 17th, 2021 at 4am

D. Final Model

For the final model, all 4565 CMLs in Austria were con-
sidered spanning all topographical properties. We used and
evaluated a variety of classification algorithms consisting of
Logistic Regressions (LogR), Support Vector Machines (SVM)
with linear and polynomial kernels, Decision Trees (DT) as
well as Random Forests (RF). Classification metrics as well
as the confusion matrix for the best model (RF) are shown
in table IV. To ensure reproducibility, all models were trained
using the same seed.

Tree-based algorithms like Decision Tree (DT) and the
ensemble variant Random Forest (RF) outperform Logistic
Regression (LogR) and Support Vector Machine (SVM) by
a significant margin on all metrics. Logistic Regression on
all available CMLs shows a noteworthy drop in performance
when compared to the subset used during baseline modeling
as described in section III-C. This is shown by a delta of at
least ≈ 27 percentage points on all metrics which may be
caused by considering all topographical properties instead of
a homogeneous subset used in the baseline model.

Authorized licensed use limited to: FH St. Poelten. Downloaded on August 22,2022 at 20:47:15 UTC from IEEE Xplore.  Restrictions apply. 



We found the best model as a Random Forest (RF) which
was able to correctly classify rain events with an accuracy of
over 94%.

TABLE IV
CLASSIFICATION METRICS AND SCORES FOR THE FINAL MODEL AND

CONFUSION MATRIX FOR THE BEST MODEL (RF)

Metric LogR SVM DT RF

Accuracy 0.708 0.685 0.939 0.947

F1 0.533 0.439 0.913 0.931

Precision 0.672 0.672 0.983 0.947

Recall 0.442 0.326 0.853 0.915

Cohen’s κ 0.733 0.756 0.866 0.888

Support 8.46 · 105

λLR < 0.01

A
ct

ua
l

Predicted

rain dry

dr
y

ra
in TP

89.93%
FN

10.07%

FP
3.84%

TN
96.16%

Figure 4 shows the output probabilities of the RF model
for the whole country with INCA radar data as ground truth
providing actual precipitation amounts. To compare the results
with the baseline model, the same time frame with July 17th,
2021 at 4am during a severe thunderstorm weekend was used.
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Fig. 4. Classified rain events considering all microwave links in Austria by
the final model with ground truth based on radar data during a thunderstorm
weekend on July 17th, 2021 at 4am

IV. CONCLUSION

Using data of Commercial Microwave Links, we show
that classic machine learning approaches are able to correctly
classify rain events with high accuracy and precision. With
this approach, using Beer-Lambert’s Law showed to be highly
beneficial to extract relevant features for the classification task

to model material properties using the extinction coefficient.
Independent of topographical properties and the severity of
the corresponding weather phenomena, classified results were
verified with ground truth radar data and could therefore be
used to improve existing numerical weather models in a cost-
effective manner by using data of already existing networks
of mobile network providers.

Additionally, an added value for mobile network providers
lies in the methods and insights gained in how the AI-
supported combination of weather and directional radio data
could be used to clearly assign outages and faults due to
weather phenomena.

V. FUTURE WORK

While classification of wet/dry events is only the first step
during this research project, predicting the actual rain rate
[mm/15 min] as close as possible is pursued. Currently we
indirectly measure how much liquid water is in the air in
the form of droplets, but a determination of how much water
actually falls to the ground for each 15 minute interval is
pursued. If a certain attenuation is measured, the amount of
rain falling on the ground depends on the square of droplet
sizes. Droplet diameter varies between about 0.1 mm and
5 mm [32], a factor of 20. Therefore, for a given measured
attenuation, the actual amount of rain can vary by a factor of
400. This inaccuracy is only mitigated by the fact that there is
apparently a correlation between the amount of rain and the
droplet size. However, this relationship is still insufficiently
researched, where AI could be used to model this relationship.

Fog is also a problem still to be solved. When droplets
are so small that they barely fall, they float in the air as
mist. A small amount of liquid water that does not fall
to the ground as rain causes a large extinction coefficient
and therefore a large attenuation on CMLs, which at first
glance cannot be distinguished from heavy rain using previous
models. However, we have been able to determine that rain
and fog cause different temporal patterns in space and can be
distinguished in the future using AI.

At the moment, we are focusing on Austria, where topog-
raphy varies from mountainous regions e.g. the Alps to low
altitudes that can sometimes produce meteorological phenom-
ena that are confined to relatively small geographic areas.
Proposed methods can be extended to explore other regions
with different meteorological characteristics.

All steps from gathering and preparation of the data at the
mobile operator to the import into processing in numerical
weather models are currently done on demand and manually.
To eliminate sources of error and ensure smoother execution,
these processes will be combined into an automated ma-
chine learning pipeline using CMLs acting as virtual weather
balloons to support numerical weather models especially in
regions, where the density of weather ground stations or radar
data is sparse due to topographical properties. Learning could
be incremental, updating the models as new CML observations
arrive with the possibility of giving more priority to most
recent data.
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