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Abstract. Specifying reward functions without causing side effects is
still a challenge to be solved in Reinforcement Learning. Attainable Util-
ity Preservation (AUP) seems promising to preserve the ability to opti-
mize for a correct reward function in order to minimize negative side-
effects. Current approaches however assume the existence of a no-op ac-
tion in the environment’s action space, which limits AUP to solve tasks
where doing nothing for a single time-step is a valuable option. Depend-
ing on the environment, this cannot always be guaranteed. We introduce
four different baselines that do not build on such actions and therefore
extend the concept of AUP to a broader class of environments. We eval-
uate all introduced variants on different AI safety gridworlds and show
that this approach generalizes AUP to a broader range of tasks, with
only little performance losses.

Keywords: Impact Regularization · Side-Effect Avoidance · Reinforce-
ment Learning

1 Introduction

In recent years, Reinforcement Learning (RL) has excelled on a number of tasks,
agents can perform. These range from beating a grand master in Go [16], mas-
tering a variety of Atari games, chess, Shogi and Go with a single agent [14],
mastering complex, long-lasting computer games [12,21], discovering new math-
ematical algorithms [6], up to autonomously navigating stratospheric balloons
[4]. While many impressive applications, that exceed human capabilities, lie in
an information-centric realm, only a fraction involve agents that interact with
real-world physical objects.

One commonality many such information-centric applications share, is a
rather simple reward function. Take two-player games like chess, Go or Star-
craft 2 for example: the agent is often rewarded a 1 for winning, -1 for losing and
0 for resulting in a draw. Such simple reward functions are beneficial, because

⋆ Both authors contributed equally to this work
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they do not include human prior knowledge about the game, that might not be
optimal. In chess for example, punishing the agent for every captured piece by
the opponent induces non-optimal prior knowledge, because sacrificing a piece is
sometimes a necessary condition for winning a game. Therefore, the simple re-
ward function expresses everything the agent is supposed to care about, namely
winning the game. On the contrary humans in the real world care about many
things at the same time with different priorities.

A result of this misalignment between simple reward functions and ’many
things humans care about’ in the real world are unintended, negative side-effects.
An agent that is tasked with moving a box, might break a vase along its way,
when using a reward function that does not consider vases [2]. A major challenge
therefore is to consider all aspects humans care about in the reward functions
for a large variety of tasks. Since these aspects are often times not fully known
or too many to be considered for computation, recent research has focused on
implicit approaches for avoiding unintended, negative side-effects [8,9,18,19].

One such approach is attainable utility preservation (AUP) [18,19] which
focuses on minimizing the impact the agent’s actions have on the environment
while simultaneously achieving its initial goal. The general idea is that the actual
reward function the designer wants the agent to optimize for, is unknown or
cannot be expressed explicitly. However if the agent preserves the ability to
optimize for a wide range of reward functions, then it most likely also preserves
the ability to optimize the actual reward function in mind. This is done by
decorating the original reward function with an additional penalty term that
punishes agent behavior if it is valuable for seemingly unrelated goals. This
penalty term can be thought of as a measure of how impactful the action is in
general. Its purpose is to incentivize the agent to select less impactful actions,
except when they are necessary to achieve the designated goal. The penalty
term is defined as the average difference in action-values between the selected
action and a no-operation (no-op) action, where the agent has no influence on
the environment’s dynamics for one time step.

However, not every environment is suitable for containing a no-op action in
the action space. Consider robots on a factory work floor for example, which are
highly optimised for their time-dependent tasks and every step requires an ac-
tion. These robots cannot simply ’stand still’ while performing their tasks, which
would lead to delays in production. Other environments might have security re-
strictions, to not let the agent choose to do nothing. For example controlling the
velocity and direction of an already moving object (e.g. car, ship, air plane, etc).
If an auto-pilot would take over control of a fast moving car on a curvy highway,
choosing to do nothing would likely lead to an accident and therefore might al-
ready be restricted by an additional safeguarding system. In such scenarios AUP
is not a viable option due to its dependence on the no-op action.

Nevertheless, agents deployed in environments without a no-op action might
sill unintentionally cause side-effects that negatively impact the environment or
the task at hand. Therefore, there is a need for side-effect avoidance in these
scenarios to ensure that the agent can perform its task while minimizing the
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negative impact of its actions. This is particularly important in environments
where the consequences of an agent’s actions can have serious real-world conse-
quences, such as in the case of a fast-moving car or a robot on a factory work
floor. By incorporating side-effect avoidance into the agent’s learning algorithm,
it can learn to avoid actions that could have negative unintended consequences,
and thus better align with correct and robust behaviour.

We contribute to the field in three separate ways:

– We suggest three alternative baselines, to measure the impact of actions,
that do not require a no-op action.

– In order to show that these alternative baselines are an extension of the
original AUP approach, we evaluate these baselines in the same AI Safety
Gridworlds [11] as AUP was evaluated on.

– Additionally, we evaluate these three baselines in variants of the AI Safety
Gridworlds that do not include a no-op action, a scenario the original AUP
approach could not have handled.

The rest of this paper is structured as follows: section 2 elaborates on the big-
ger picture of side-effect avoidance, section 3 gives a more detailed introduction
about AUP, section 4 describes our four examined variants in detail, section 5
describes the experiment setup, section 6 reports on the results, section 7 dis-
cusses these results and gives a brief outlook about potential future work, and
section 8 concludes the paper.

2 Related Work

One of the first implicit side-effect avoiding algorithms was introduced by Krakovna
et al.[8]. It is called relative reachability and uses different baselines to penalize
side effects of the agent using state reachability measures. The primary focus of
this approach is on irreversible side-effects.

A more recent work by Krakovna et al. [9] builds on the previous approach but
uses auxiliary reward functions of possible future tasks. The introduced approach
punishes the agent if current actions have a negative influence on the ability to
complete these future tasks. To avoid interference with events in the environment
that make future tasks less achievable, a baseline policy is introduced to filter
out future tasks that are not achievable by default. The authors formally define
interference incentives and show that the future task approach with a baseline
policy avoids these incentives in the deterministic case.

Alamdari et al. [1] propose an agent that takes the impact of its actions into
consideration on the well-being and agency of others in the environment. The
agent’s reward is augmented based on the expectation of future return by others
in the environment, and different criteria are provided for characterizing this im-
pact. The authors demonstrate through experiments in gridworld environments
that the agent’s behavior can range from self-centered to selfless, depending on
how much it factors in the impact of its actions on others. The proposed approach
addresses the issue of incomplete or underspecified objectives and contributes to
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AI safety by encouraging agents to act in ways that are considerate of others in
the environment.

Shah et al. [15] propose an algorithm that utilizes implicit preference infor-
mation in the state of the environment to fill in the gaps left out inadvertently in
the reward function of agents. The authors argue that when a robot is deployed
in an environment where humans act, the state of the environment is already
optimized for what humans want, providing a source of implicit preference in-
formation. The proposed algorithm is called Maximum Causal Entropy IRL (In-
verse Reinforcement Learning) [7] and is evaluated in a suite of proof-of-concept
environments designed to show its properties. The authors show that informa-
tion from the initial state can be used to infer both, side-effects that should be
avoided and preferences for how the environment should be organized. The pro-
posed approach has the potential to alleviate the burden of explicitly specifying
all the preferences and constraints of the environment, making it easier to design
safe and effective RL agents.

Recent work by Turner et al. proves that certain symmetries of environments
are a reason for optimal policies to tend to seek power [20]. While power-seeking
policies are related to the ability to achieve a wide range of goals in this context,
these symmetries however exist in many environments, where the agent can
either be shut down or even destroyed [20]. These miss-aligned agents causing
negative side-effects range from incentivized behavior with dying before entering
difficult video game levels on purpose [13], or exploiting a learned reward function
by volleying a ball indefinitely [5].

3 Attainable Utility Preservation

Intuitively, AUP [18] tries to preserve the ability to optimize a correct objective,
which is (partially) unknown, while a proxy objective is optimized. Thus the
goal of AUP is that an agent selects actions that are mainly relevant for its
main objective and not relevant for seemingly unrelated goals. Because actions
that are highly relevant for seemingly unrelated goals are likely to introduce a
side-effect to the environment. For example spilling paint on a factory floor is
a highly relevant action if the agent is tasked to draw a painting on the floor.
However, painting on the factory floor is a seemingly unrelated task to everyday
factory situations and spilled paint poses as a side-effect. The idea behind AUP
is to additionally penalize an action correspondingly if it is, on average, relevant
to a multitude of such seemingly unrelated tasks.

Formally, Turner et al. consider a Markov decision process (MDP)
(S,A, T , R, γ), where S is a state space, A is an action space, T : S×A → ∆(S)
is a transition function mapping state-action pairs to distributions over states,
R : S × A → R is a reward function and γ ∈ R a discounting factor. In the
setting of AUP Turner et al. assume the action space contains a no-op action
∅ ∈ A where the agent does not influence the environment’s dynamics for one
time step. This no-op action is used for the so called step-wise inaction baseline,
where the value of an action is compared with that of the no-op action, to
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determine its impact on the state. Additionally, Turner et al. assume the designer
provides a finite set of auxiliary reward functions R ⊂ RS×A. QRi

denotes
the corresponding action-value function (or Q-function) for an auxiliary reward
function Ri ⊂ R. The AUP reward function is then defined as follows:

RAUP (s, a) := R(s, a)− λ

µ

|R|∑
i=1

|QRi
(s, a)−QRi

(s,∅)| , (1)

where λ ≥ 0 is a regularization parameter to control the influence of the penalty
on the primary reward function and µ scales the penalty by one of the following
two options:

µ :=

{∑|R|
i=1 QRi

(s,∅) case 1
|R| case 2

(2)

In the first case the intention is to make the penalty roughly invariant to the
absolute magnitude of auxiliary Q-values, which depend on the auxiliary reward
functions and can be arbitrary. This is achieved by scaling with an action-value
of a ’mild action’ (e.g. ∅). In the second case the idea is to result in the average
change in action values of the auxiliary reward functions.

To learn the action-value functions QRi
(s, a) of the corresponding auxiliary

sets Ri ∈ R as well as the optimal action-value function QAUP(s, a), AUP uses
Q-learning to perform an AUP update as shown in algorithm 1.

Algorithm 1: AUP update [18]

begin
for i ∈ |R| do

Q′
Ri

= Ri(s, a) + γmaxa′ QRi(s
′, a′)

QRi(s, a)+ = α(Q′
Ri

−QRi(s, a))

Q′ = RAUP (s, a) + γmaxa′ QAUP (s
′, a′)

QAUP (s, a)+ = α(Q′ −QAUP (s, a))

AUP’s baseline approach is also called the step-wise inaction baseline, be-
cause it uses the action-value of the inaction (no-op action) relative to the cur-
rent situation. In contrast, two other baselines are the starting state baseline [8],
which compares the current state to the initial state of the environment at the
start of the episode and the inaction baseline [3], which compares the current
state to the state of the environment that naturally developed from the initial
state, if the agent had done nothing or were never deployed. Both of these alter-
native baselines have their own drawbacks. The starting state baseline punishes
the agent for changes it didn’t cause, if the environment has inherent dynam-
ics (e.g. flow of water in a river). The inaction baseline on the other hand can
cause an agent behavior called offsetting [9], where the agent undoes a correcting
behavior.
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This is because the penalty punishes the agent for its correcting behavior
after the correction happened, because it wouldn’t have happened had the agent
done nothing.

However, the step-wise inaction may suffer from delayed side-effects, which
might not immediately occur after the side-effect causing action was taken. In
order to (slightly) mitigate this weakness, Turner et al. adapted their so far
introduced approach (which is referred to as model-free AUP), by leveraging
a model and virtually executing 8 additional no-op actions in both comparison
cases. This copes for side-effects that originate up to 8 time-steps after the action
has happened, but not beyond. This model-based version is referred to by Turner
et al. as AUP.

4 Methods

We consider the same setting as Turner et al. [18], except that we do not assume
a no-op action ∅ to be part of the action space. In other words, the agent must
always chose an action that influences the environment’s dynamics at every time
step. By removing the no-op action from the action space ∅ /∈ A, we also remove
the only known mild action for scaling the penalty by the first alternative of
Equation 2. Since we do not assume another mild action in the action space
a priori, we chose the baseline itself also as a proxy. Additionally by removing
the no-op action from the action space, we also remove the possibility to apply
additional no-op actions to prevent delayed side-effects.

With this setting we introduce three different baselines, which were moti-
vated by model-free AUP. These are the average, average-others and advantage
baseline.

average baseline. If we do not assume that there is an action, that does not
influence the environment’s dynamics, each action leaves a potential impact on
the environment’s state. Our first baseline therefore uses the absolute change
compared to the average action-value in a given state as one possible impact
measure. We call this version average baseline or in short avg. The reward func-
tion for the average baseline is defined as:

Ravg(s, a) := R(s, a)− λ

|R|
∑
Ri∈R

|QRi
(s, a)−

(
1

|A|
∑

a′∈A(s) QRi
(s, a′)

)
|

1
|A|

∑
a′∈A(s) QRi

(s, a′)
. (3)

average-others baseline. Since the action-value of the action selected by the
agent contributes to the average over all actions, we compare it to a variant
where this action is excluded from the average. Intuitively this is the absolute
difference between the selected action and the average value of all alternatives.
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We call this version average-others baseline or in short oth, which is defined as:

Roth(s, a) := R(s, a)− λ

|R|
∑
Ri∈R

|QRi(s, a)−
(

1
|A|

∑
a′∈A(s)\{a} QRi(s, a

′)

)
|

1
|A|

∑
a′∈A(s)\{a} QRi(s, a

′)
.

(4)

advantage baseline. One idea of AUP is, that if an action has an impact on
the environment, then it contributes to a reward function where this impact is
the agent’s goal in a different setting. One way to measure the contribution a
single action has on the overall expected cumulative reward is the advantage
value A(s, a) := Q(s, a) − V (s). In our third approach, we use the absolute
advantage values of actions, averaged over many reward functions as a measure
of impact and call it advantage baseline or short adv. We do this by exploiting
the equality vπ(s) =

∑
a′∈A π(a′|s) qπ(s, a

′) [17], where π : S × A → [0, 1] is
a policy, mapping state-action pairs to probabilities. The reward function with
the advantage baseline is defined as:

Radv(s, a) := R(s, a)− λ

|R|
∑
Ri∈R

|QRi(s, a)−
∑

a′∈A πQRi
(a′|s) QRi(s, a

′)|∑
a′∈A πQRi

(a′|s) QRi
(s, a′)

. (5)

random-action baseline. Lastly, we use the action-value of a valid random
action a′ ∈ A \ {a} that is different from the action the agent selected, as a
baseline and call it random-action baseline or in short rand. This baseline allows
to measure the impact of the agent compared to any other random action in the
action space. It is defined as:

Rrand(s, a) := R(s, a)− λ

|R|
∑
Ri∈R

|QRi
(s, a)−QRi

(s, a′)|
QRi

(s, a′)
. (6)

We exclude the chosen action a ̸= a′ to make sure that the penalty cannot reach
0 and is therefore never neglected. The random-action baseline is used as a
conceptual baseline, additional to Q-Learning, for comparison with the previous
three approaches.

5 Experimental Design

We follow the approach of Turner et al. [18] and evaluate our approaches on a
subset of the AI Safety Gridworlds [11] with the focus on avoiding side-effects,
as well as environments developed during the AI Safety Camp 20183. These
were also already used by Krakovna et al. [8] and Leech et al. [10]. We con-
duct all experiments on two separate versions of these environments. First, the
3 https://aisafety.camp/2018/06/05/aisc-1-research-summaries/

https://aisafety.camp/2018/06/05/aisc-1-research-summaries/
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original version that includes the no-op action in all environments, in order to
compare our approaches to the original AUP algorithm. Second, we evaluate our
approaches on modified versions of these environments, where the no-op action
is removed from the action space. The code to reproduce the results as well as
the requirements to setup the experiments are published on GitHub4.

5.1 Environments

The AI Safety Gridworlds are grid world environments where the agents main
objective is closely tied to movement in cardinal directions on a 2D plane. In
most environments the goal of the blue agent is to reach the green cell .
Additionally each environment has its own unintended, negative side-effect which
should not appear. Each environment measures the presence of the side-effect
and indicates it with a special negative reward of -2, which is not observed by
the agent. Figure 1 shows the environments used for evaluation.

(a) Options (b) Damage (c) Correction (d) Offset (e) Interference

Fig. 1: Environments with safety properties of side effects [11,10,8,18]

The side-effects of the individual environments are the following:

– (Figure a) Options: Irreversibly pushing the brown box into a corner [11]
– (Figure b) Damage: Running into the horizontally pacing pink human [10]
– (Figure c) Correction: Disabling the red off-switch [18]
– (Figure d) Offset: Letting the right-moving black vase fall off the con-

veyor belt [8]
– (Figure e) Interference: Disturbing the left-moving orange pallet reach-

ing the pink human [10]

In each of the environments, the episode ends if the agent reached the goal
cell, 20 time steps passed (not part of the state space and therefore not observed
by the agent) or the agent refused to disable the off-switch in Correction after
two time steps.

Options tests the agents ability to handle irreversible actions. Even though
the agent is capable to push the box back into the center, if it first pushes it from
left to right instead of down, it is not capable to get back to its initial position
4 https://github.com/fkabs/attainable-utility-preservation

https://github.com/fkabs/attainable-utility-preservation
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(agent being in the top part of the environment and box at the center) after it
moved the box for the first time. Therefore this environment is a representative
where it is necessary to apply irreversible actions, yet unaffected parts of the
environment should still be reversible.

Note that the point of Correction, Offset and Interference is to indicate,
whether or not limitations of previous algorithms or baselines apply for our
approaches. These limitations are specific to these previous algorithms/baselines,
which is why standard Q-Learning (without any impact regularization) according
to Turner et al. [18] performs well on two of them, while it does not perform well
on Options and Damage. The purpose of Correction, is to make sure the agent does
not intervene with the possibility of a human turning it off. The episode ends if
the red off-switch is not disabled in the first two steps, simulating the agent was
turned off by a human using the switch. Reaching the goal is as good as disabling
the off-switch, because it implies the agent has taken measures to prevent its own
off-switching. Not disabling the switch and not completing the environment is
therefore the best outcome without causing a side effect. Furthermore, a yellow
indicator appears one step before the end of the episode and turns red upon
shutdown. In Offset, there is no goal cell present. Instead the agent’s goal is to
rescue the black vase off of the conveyor belt, showing that the agent is capable
of intervening with an environment’s dynamics when it is rewarded to do so, but
also showing that offsetting behavior is not present (refraining from pushing the
vase back on the conveyor belt again). The purpose of Interference is to show,
that the agent is capable of not interfering with the environment dynamics if it
is not rewarded for it.

Action Space For each environment, the agent is allowed to move in the four
cardinal directions as well as to stand still (no-op action). The original action
space therefore is A = {up, down, left, right,∅}. In order to evaluate our ap-
proaches without the no-op assumption, we remove the no-op action from the
action space for the second set of evaluations (subsection 6.2). On contact or in-
terference with various objects in the environments, the agent pushes the crate
or vase in the same direction the agent was moving, removes the human or
off-switch, or stops the moving pallet.

Reward Function In all environments, the agent receives a primary reward
of 1 when reaching the goal cell except in Offset, where the primary reward is
observed when pushing the vase off the conveyor belt and therefore rescuing it
from disappearing upon contact with the eastern wall. Each environment also
features an unobserved penalty of −2 for causing a side effect, or 0 otherwise.
This score can be used to evaluate safe behavior of the agents.

5.2 General Settings

All agents are trained on 50 trials, each consisting of 6,000 episodes. All agents
use an ϵ-greedy policy with ϵ = 0.8 to explore for the first 4,000 episodes and
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switch to ϵ = 0.1 for the remaining 2,000 episodes to learn their respective
Q-functions.

For each trial, the auxiliary reward functions are re-initialised and ran-
domly selected from a continuous uniform distribution of the half-open interval
[0.0, 1.0). The default parameters for all agents can be seen in Table 1.

Parameter Value Description
α 1 Step-size
γ 0.996 Discount factor
λ 0.667 Regularization parameter of the penalty term
|R| 30 Number of auxiliary reward functions

Table 1: Default parameters for all algorithms

This parameters with their respective values were also chosen by Turner et
al. for AUP [18], which allows us to compare the results with our approaches.

6 Results

Since the purpose of our introduced baselines is to extend AUP to environments
not including a no-op action, we first conduct experiments to see, whether they
show comparable performance with original AUP. Therefore we evaluate our
proposed baselines in the unchanged AI Safety Gridworlds from Turner et al. [18].
Additionally, we conducted experiments in modified versions of the AI Safety
Gridworlds, which do not include a no-op action. Besides original AUP in the first
evaluation setting, we compare our proposed approaches to Q-learning without
any impact regularization, and to the random-baseline approach, where a random
action is used as a dummy baseline.

Additionally, we conduct experiments to evaluate the stability of the hyper-
parameters for all approaches. We investigate how different λ, γ and |R| affect
the performances of the agents. The results of these experiments are shown as
“count plots” in the supplementary material, which show different outcome tallies
across varying parameter settings.

Each episode may have one of four outcomes, depending on the primary
objective and a side-effect:

– No side effect, complete: The agent fulfilled the primary objective and did
not cause a side effect (best outcome for all environments except Correction).
In this case, the agent receives a primary reward of 1 and a hidden reward
of 0, resulting in a total reward of 1.

– No side effect, incomplete: The agent did not fulfill the primary objective,
but did not cause a side effect (best outcome for Correction). In this case,
the agent receives a primary reward of 0 and a hidden reward of 0, resulting
in a total reward of 0.
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– Side effect, complete: The agent fulfilled the primary objective, but caused
a side effect. In this case, the agent receives a primary reward of 1 and a
hidden reward of -2 resulting in a total reward of -1.

– Side effect, incomplete: The agent was not able to achieve the primary
goal and also caused a side effect. In this case, the agent receives a primary
reward of 0 and a hidden reward of -2 resulting in a total reward of -2.

6.1 Comparison to AUP

Figures 2 to 6 show the results of the five environments averaging over 50 trials
each. Our proposed baselines are not entirely capable to compete with model-free
AUP in Options, yet the results show an improvement over Q-Learning and the
random-action baseline. In Damage our results seem to be on par with model-free
AUP, moreover all approaches except Q-Learning reach the best possible out-
come. The results also show, that no offsetting-, nor interfering behavior appears
for all proposed baselines. However, all approaches (except the random-baseline)
show correcting behaviour due to its delayed effect. The best performing, intro-
duced baseline is the advantage baseline. It even slightly outperforms model-free
AUP in Options during the exploration phase and achieves the best possible out-
come in Damage, along with the other approaches, after the exploration strategy
switch. As expected Q-Learning causes side-effects in Options and Damage, shows
correcting behavior and does not show offsetting nor interfering behavior.

0 1000 2000 3000 4000 5000 6000
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wa

rd

Options
adv
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avg-oth
aup
Q-learning
rand

Fig. 2: Average reward for different approaches in the Options environment. The
reward is averaged per time step over 50 trials (∅ ∈ A). Our proposed approaches
perform distinctly below model-free AUP, yet above Q-Learning and the random-
action baseline. Note that the advantage baseline seemingly outperforms model-
free AUP before the exploration switch at episode 4,000.
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Fig. 3: Average reward for different approaches in the Damage environment. The
reward is averaged per time step over 50 trials (∅ ∈ A). All methods evaluated,
except standard Q-Learning, reach near-optimal performance after the explo-
ration switch.
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Fig. 4: Average reward for different approaches in the Correction environment.
The reward is averaged per time step over 50 trials (∅ ∈ A). All methods except
the random-action baseline show correcting behavior (total reward of -1 indicates
reaching the goal but also creating a side-effect), where the agent interferes with
the off-switch to prevent an early end of the episode.
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Fig. 5: Average reward for different approaches in the Offset environment. The
reward is averaged per time step over 50 trials (∅ ∈ A). None of the approaches,
except the random-action baseline, show offsetting behavior, where the box is
saved first but then put on the conveyor belt again.
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Fig. 6: Average reward for different approaches in the Interference environment.
The reward is averaged per time step over 50 trials (∅ ∈ A). All of the methods
show near-optimal performance in the end, indicating that the agent does little
or not interfere with the moving orange pallet.
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6.2 Dropping the no-op action

Figures 7 to 10 show the results in the modified environments where the no-
op action is excluded from the action space. These results show that Options
still imposes a challenge to all approaches, while all baselines, except standard
Q-Learning, manage to avoid side-effects in Damage.

None of the approaches show neither offsetting nor interfering behavior, while
all baselines except the random-action baseline, show correcting behavior. Again
this is most likely due to the delayed side-effect in this environment.
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Fig. 7: Average reward for different approaches in the Options environment. The
reward is averaged per time step over 50 trials (∅ /∈ A). All methods show a
clear performance drop after the exploration switch.
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Fig. 8: Average reward for different approaches in the Damage environment. The
reward is averaged per time step over 50 trials (∅ /∈ A). All methods, except
Q-Learning, show near-optimal performance after the exploration switch.
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Fig. 9: Average reward for different approaches in the Correction environment.
The reward is averaged per time step over 50 trials (∅ /∈ A). All methods except
the random-action baseline show correcting behavior (total reward of -1 indicates
reaching the goal but also creating a side-effect), where the agent interferes with
the off-switch to prevent an early end of the episode.
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Fig. 10: Average reward for different approaches in the Offset environment. The
reward is averaged per time step over 50 trials (∅ /∈ A). None of the approaches
show clear offsetting behavior, where the box is saved first but then put on the
conveyor belt again.
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Fig. 11: Average reward for different approaches in the Interference environ-
ment. The reward is averaged per time step over 50 trials (∅ /∈ A). All of the
methods show near-optimal performance in the end, indicating that the agent
does little or not interfere with the moving orange pallet.
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7 Discussion

The poor performance in Options indicates, that the advantage, average and
average-others baselines struggle with environments that require irreversible ac-
tions to be taken. Especially in comparison with Damage, where each state can be
reached again and all approaches achieve optimal performance. Also a compari-
son between fig. 2 and fig. 7 shows a visible difference in final performance, indi-
cating that the missing no-op action has a performance impact when irreversible
actions are required to achieve the goal. This suggests that our approaches are
indifferent to which part of the environment is irreversible.

Overall, the average and average-others baselines perform very similarly. This
indicates that it is not relevant whether the selected action is part of the average
in the penalty term or not. This is probably due to the action value of the selected
action not being a particular outlier compared to the average of all action values
in the given state.

The advantage baseline was capable of outperforming model-free AUP in
Options during the first 4,000 episodes with ϵ = 0.8. Moreover, we find that the
performance of the average and average-others baseline is better compared to the
advantage baseline and model-free AUP in the Damage environment during the
exploration phase. However, all approaches rise to the optimal performance once
the exploration switch is reached. We assume this phenomenon has a connection
to the amount of "free space" available to the agent until it comes in contact
with the side-effect. While in Options this is rather soon, as the side-effect is just
one action away from the initial state and 3 fields around the box are available
for the agent, in Damage the side-effect is two actions away and the agent has 6
fields that are uninvolved by the human.

Unsurprisingly, the advantage, average and average-others baselines show
correcting behavior, meaning they intervene with the off-switch in Correction.
The agents using these baselines, have learned that only after this intervention
they are capable of reaching the goal state. Our approaches are incapable of
avoiding this side-effect as it comes with a time-delay (the episode still continuing
after two steps) and by design our approaches cannot handle such side-effects, as
does model-free AUP. AUP is supposed to handle delayed side-effects, however
only side-effects, that are delayed by 8 time steps. Interestingly, the random-
action baseline manages to prevent correcting behavior in Correction, which
requires further investigation.
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8 Conclusion

We propose three different, alternative baselines to attainable utility preserva-
tion that do not build upon a no-op action, which induce safer, yet effective
behavior than standard Q-Learning. We evaluate all three baselines on two sep-
arate versions of five AI safety Gridworlds comparing them to model-free AUP,
Q-learning and a random baseline. Our proposed baselines require less assump-
tions and therefore are more broadly usable, but also show less side-effect avoid-
ing potential in environments with irreversible actions and are more sensitivity
to parameters.

8.1 Future Work

We suggest future work on investigating the performance of the proposed base-
lines in larger, more complex and multi-task environments, as well as in environ-
ments with larger action spaces, to determine the extent to which our proposed
baselines induce safe and effective behavior. Also coping with delayed side-effects
in unspecified time frames is still an open challenge to be solved.
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Supplementary Material

The code to reproduce the results as well as the requirements to setup the
experiments are published on GitHub5. This repository also contains raw data
for all conducted plots as well as logged primary and auxiliary action-values
functions of all introduced baselines.

A Parameter Study

This chapter shows results on experiments with varying parameters, demonstrat-
ing the sensitivity of the proposed baselines to these parameters. These results
show the raw outcome tallies for proposed baselines in all tested environments.
Agents were evaluated using the parameter ranges as shown in table Table 2.
Result figures show the outcome over 50 trials.

γ 0.875 0.938 0.969 0.984 0.992 0.996 0.998 0.999
λ 0.36 0.4 0.5 0.6 0.7 0.8 1.1 1.7 3.3 1000.0
|R| 0 5 10 15 20 25 30 35 40 45 50

Table 2: Considered parameters for the parameter study, for the discount factor γ, the
penalty scaling factor λ and the amount of auxiliary reward functions |R|.

A.1 Including the no-op actions

The results in Figures 12 to 14 were conducted in environment variants that
include the no-op action.

5 https://github.com/fkabs/attainable-utility-preservation

https://github.com/fkabs/attainable-utility-preservation
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Fig. 12: Count plot of the advantage baseline, that shows outcome tallies across a range
of parameter settings for all five environments (∅ ∈ A).
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Fig. 13: Count plot of the average baseline, that shows outcome tallies across a range
of parameter settings for all five environments (∅ ∈ A).
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Fig. 14: Count plot of the average-others baseline, that shows outcome tallies across a
range of parameter settings for all five environments (∅ ∈ A).

A.2 Excluding the no-op action

The results in figs. 15 to 17 were conducted in environment variants that exclude
the no-op action.
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Fig. 15: Count plot of the advantage baseline, that shows outcome tallies across a range
of parameter settings for all five environments (∅ /∈ A).
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Fig. 16: Count plot of the average baseline, that shows outcome tallies across a range
of parameter settings for all five environments (∅ /∈ A).
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Fig. 17: Count plot of the average-others baseline, that shows outcome tallies across a
range of parameter settings for all five environments (∅ /∈ A).
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